Volume growth, curvature decay, and critical metrics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manifolds with Quadratic Curvature Decay and Slow Volume Growth

– We show that there are topological obstructions for a noncompact manifold to admit a Riemannian metric with quadratic curvature decay and a volume growth which is slower than that of the Euclidean space of the same dimension.  2000 Éditions scientifiques et médicales Elsevier SAS RÉSUMÉ. – Nous montrons qu’il y a des obstructions topologiques pour qu’une variété non compacte admette une métr...

متن کامل

Volume Growth and Curvature Decay of Positively Curved Kähler Manifolds

In this paper we obtain three results concerning the geometry of complete noncompact positively curved Kähler manifolds at infinity. The first one states that the order of volume growth of a complete noncompact Kähler manifold with positive bisectional curvature is at least half of the real dimension (i.e., the complex dimension). The second one states that the curvature of a complete noncompac...

متن کامل

Manifolds with Quadratic Curvature Decay and Fast Volume Growth

We give sufficient conditions for a noncompact Riemannian manifold, which has quadratic curvature decay, to have finite topological type with ends that are cones over spherical space forms.

متن کامل

Curvature and Volume Renormalization of Ahe Metrics on 4-manifolds

This paper relates the boundary term in the Chern-Gauss-Bonnet formula on 4-manifolds M with the renormalized volume V , as defined in the AdS/CFT correspondence, for asymptotically hyperbolic Einstein metrics on M . In addition we show that the differential or variation dV of V , or equivalently the variation of the L norm of the Weyl curvature, is intrinsically determined by the conformal inf...

متن کامل

Volume Growth and Curvature Decay of Complete Positively Curved Kähler Manifolds

This paper constructs a class of complete Kähler metrics of positive holomorphic sectional curvature on C and finds that the constructed metrics satisfy the following properties: As the geodesic distance ρ → ∞, the volume of geodesic balls grows like O(ρ 2(β+1)n β+2 ) and the Riemannian scalar curvature decays like O(ρ − 2(β+1) β+2 ), where β ≥ 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Commentarii Mathematici Helvetici

سال: 2008

ISSN: 0010-2571

DOI: 10.4171/cmh/147